Pad foundation design

Geotechnical design

Allowable bearing capacity by Brinch Hansen

$$q_{all} = \frac{1.3cN_c + q'_o N_q R_{w1} + 0.4\gamma B N_\gamma R_{w2}}{\gamma_f}$$

where :

q' is the effective over- burden pressure $q'_o = \gamma D_f$

where :

 γ is the unit weight of the soil

D_f is depth of the foundation base from the ground level

B is the width of the foundation

 $\gamma_{\rm f}$ is factor of safety against bearing capacity failure (2.0 – 3.0)

c is the cohesion (for the drained or undrained case under consideration) and Nc, Nq and N are shallow bearing capacity factors *(the calculator selects equivalent allowable bearing capacity factors from internal angle of shear in the Table 1)*

 $R_{\rm w1}$ and $R_{\rm w2}\,$ is factors of water table effect

When the water table is above the base of foundation at a distance 'a' the correction R_{w1} is

$$R_{w1} = 1 - 0.5 \left(\frac{a}{D_f}\right) \le 1$$

When the water table is below the base of foundation at a distance 'b' the correction R_{w2} is

$$R_{w2} = 0.5 + 0.5 \left(\frac{b}{B}\right) \le 1$$

Preliminary sizing of pad footing

$$Area = V_d / q_{all}$$

$$Area, pad footing = b * l$$

where :

 V_d is design vertical load, V_d = dead load + 1.3 * live load ; q_{all} allowable bearing capacity

b and l are the width and length of the foundation

Ultimate bearing pressure

$$ULS, q = factored load / Area$$

Where:

factored load is dead load * safety factor + live load * safety factor Area is the pad foundation area

Flexure design

Design load

$$Design \ load = Live \ load * SF, q_k + Dead \ load * SF, g_k$$

where :

 SF,q_k and SF,g_k are safety factors for live load and dead load respectively Design moment at the face of the column

$$M_{ED1} = \frac{ULS_{,q} l \left[\frac{b - c_x}{2}\right]^2}{2}$$
$$M_{ED2} = \frac{ULS_{,q} b \left[\frac{l - c_y}{2}\right]^2}{2}$$

where :

ULS_{,q} is ultimate bearing pressure

b and l are the width and length of the foundation

 c_x and c_y is column cross sectional dimension

Determine K for respective M_{ED}

$$K_1 = M_{ED1} / (l * d_1^2 f_{ck})$$

$$K_2 = M_{ED2} / (b * d_2^2 f_{ck})$$

where :

 M_{ED1} , M_{ED2} are bending moment at the face of the column b and l are the width and length of the foundation

d1 and d2 the effective depths in orthogonal directions

```
d_1 = h - cover - O_1/2
d_2 = h - cover - O_1 - O_2/2
where :
```

h is depth of the pad foundation

Ø is diameter of the reinforcement bar

fck is characteristic compressive strength

$$K' = 0.6 \,\delta - 0.18\delta^2 - 0.21 = 0.16955$$

(δ =1.0 means no redistribution and δ = 0.85 means 15% moment redistribution).

If $K \le K'$, no compression steel needed. If $K \ge K'$, compression reinforcement required – not recommended for typical foundation, thus redesign the section of the foundation. Lever arm (z)

$$z_1 = \frac{d_1}{2} \left(1 + \sqrt{1 - 3.53K_1} \right) \le 0.95d_1$$
$$z_2 = \frac{d_2}{2} \left[1 + \sqrt{1 - 3.53K_2} \right] \le 0.95d_2$$

where :

 d_1 and d_2 are effective depth in orthogonal directions Area of tensile reinforcement (A_s)

$$A_{s,1} = \frac{M_{ED}}{f_{yd} * z_1}$$
$$A_{s,2} = \frac{M_{ED2}}{f_{yd} * z_2}$$

where :

 M_{ED1} , M_{ED2} are bending moment at the face of the column

 z_1 and z_2 are lever arms in orthogonal directions

 f_{yd} is deign yield strength of steel = f_{yk} / γ_s

where :

 $f_{yk}\xspace$ is characteristic yield strength of steel

 γ_s partial safety factor for steel

Number of reinforcement bars

$$n_1 = \frac{A_{s,1}}{a_s}$$
$$n_2 = \frac{A_{s,2}}{a_s}$$

where :

 $A_{s,1}$ and $A_{s,2}$ are areas of the tensile reinforcement

a_s is area of a single reinforcement bar

Spacings (s)

$$s_{1} = \frac{l}{\left(\frac{A_{s,1}}{a_{s}} - 1\right)} \le s_{limit}$$
$$s_{2} = \frac{b}{\left(\frac{A_{s,2}}{a_{s}} - 1\right)} \le s_{limit}$$

where :

 $A_{s,1} \mbox{ and } A_{s,2}$ are areas of the tensile reinforcement

as is area of a single reinforcement bar

b and l are the width and length of the foundation

 S_{limit} is the maximum spacing {2*h*, 250}

where :

h is the foundation depth

Minimum reinforcement requirements

$$A_{s-1,min} \ge \frac{0.26f_{ctm}ld_1}{f_{yk}} \ge 0.0013ld_1$$
$$A_{s-2,min} \ge \frac{0.26f_{ctm}b_td_2}{f_{yk}} \ge 0.0013b_td_2$$
where f_{ck} > 25

where :

 f_{ctm} is tensile strength of the concrete

 $f_{ctm} = 0.3 f_{ck}^{2/3}$ for concrete class $\leq C50/C60$

 $f_{yk} \mbox{ is } \mbox{ characteristic yield strength of steel }$

 b_t and l are breadth and length of the tension zone

d1 and d2 are effective depth in orthogonal directions

Maximum reinforcement requirement

$$A_{s,max} \leq 0.04A_c$$

where:

Ac is area of concrete

$$A_c = b * h and l * h$$

Check minimum spacing between bars

$$Spacing > \phi_{bar} > 20 > A_{gg} + 5 \ (mm)$$

where :

 A_{gg} is size of the course aggregate

Internal angle of shear φ	Bearing capacity factors*		
	N _c	Nq	Nγ
0	5.0	1.0	0.0
5	6.5	1.5	0.0
10	8.5	2.5	0.0
15	11.0	4.0	1.4
20	15.5	6.5	3.5
25	21.0	10.5	8.0
30	30.0	18.5	17.0
35	45.0	34.0	40.0
40	75.0	65.0	98.0

Table 1 Bearing capacity factors for a given internal angle of shear

*Values from charts by Brinch Hansen (1961).

Shear design

Beam shear (at critical section - d distance away from column face)

$$V_{ED,1} = ULS, q * (\frac{b - c x - 2d}{2})$$
$$V_{ED,2} = ULS, q * (\frac{l - cy - 2d}{2})$$

where :

ULS,q is ultimate bearing pressure;

cx,cy are column width along x and y direction

d is average effective depth, $d = (d_1 + d_2)/2$

$$d_1 = h - cover - \emptyset_1/2$$

$$d_2 = h - cover - \emptyset_1 - \emptyset_2/2$$

where :

h is depth of the pad foundation

Ø is diameter of the reinforcement bar

$$\frac{V_{ED,1}}{d_1}$$
; gives beam shear stress
 $\frac{V_{ED,2}}{d_2}$; gives beam shear stress

Design punching shear stress (at face of column)

$$v_{ED,max} = \frac{\beta v_{ED}}{u_0 d}$$

where :

 β is factor dealing with eccentricity

 $v_{\text{ED},}$ is applied force minus net force within the area of the foundation column

 v_{ED} = Applied load - ultimate bearing press * ($c_x * c_y$)

 u_0 is perimeter of the column cross section

d is average effective depth, $d = (d_1 + d_2)/2$

Design punching shear stress (at basic control perimeter, u_1)

$$v_{ED} = \beta \frac{v_{ED}}{u_1 d}$$

where :

 β is factor dealing with eccentricity

 $v_{ED,}$ is applied force minus net force within the area of the control perimeter on the foundation

 $v_{ED} = \text{Applied load - ultimate bearing press} \left[(cx * cy) + \pi (2d)2 + 4d(cx + cy) \right]$ u₁ is 2 (cx + cy) + 2\pi * 2d

d is average effective depth, $d = (d_1 + d_2)/2$

Determine $v_{Rd,max}$ (refer to table 7:concise table for respective concrete grade)

$$v_{RD,max} = 0.5 v f_{cd}$$

where :

 f_{cd} is design compressive strength, $f_{cd} = f_{ck} / \gamma_c$

$$v = 0.6 \left(1 - \frac{f_{ck}}{250} \right) \alpha_{cc}$$

where :

 f_{ck} is characteristic compressive strength of the concrete α_{cc} is the coefficient taking account of long term effects on the compressive strength and of unfavourable effects resulting from the way the load is applied. It is recommended as 1.0 γ_c partial safety factor for concrete

If $v_{ED,max} \leq v_{Rd,max}$, proceed to the next step - otherwise redesign the section. (Increase the compressive strength of the slab)

Concrete shear capacity (without shear reinforcement) ($v_{Rd,c}$)

$$v_{RD,c} = C_{Rd,c} k (100\rho f_{ck})^{\frac{1}{3}} \ge V_{min}$$
$$V_{min} = 0.035 k^{1.5} f_{ck}^{0.5}$$
$$\rho_x = \frac{A_{s,1}}{l * d_1} \rho_y = \frac{A_{s,2}}{b * d_2}$$
$$\rho = (\rho_x * \rho_y)^{\frac{1}{2}} \le 0.02$$

where :

 $C_{RD,c}$ is coefficient derived from test (0.18/1.5)

b and l are the width and length of the foundation

d is average effective depth, $d = (d_1 + d_2)/2$

k is size factor, $k = 1 + \sqrt{200/d} \le 2.0$

 ρ is steel ratio and ρ_x, ρ_y are steel ratio along x and y direction

 f_{ck} is characteristic compressive strength in MPa

If $v_{ED} \le v_{Rd,c}$, safe against shear(beam shear and punching shear).

If $v_{ED} \ge v_{Rd,c}$, Redesign foundation section !

Table 7

(punching shear reinforcement is not recommended for foundation)

Values for v _{Rd, max}		
f _{ck}	V _{Rd,max}	
20	3.68	
25	4.50	
28	4.97	
30	5.28	
32	5.58	
35	6.02	
40	6.72	
45	7.38	
50	8.00	

Shear checks for pad foundations

